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SUMMARY

A wind-tunnel investigation of a series of modifications to the

leading-edge region of the NACA 631-012 airfoil section was conducted to

determine the possibilities of delaying the flow separation that occurs

near the leading edge of the basic section and of improving the stalling

characteristics thereby.

Increasing the leading-edge radius or adding thickness to the lower

surface near the leading edge did not improve the stalling characteris-

tics and resulted in only small increases in the maximum lift coefficient.

Two cambered modifications were effective enough in delaying the leadlng--

edge separation to permit turbulent separation to begin and extend over a

portion of the airfoil near the trailing edge, thus causing a rounding of

the lift-curve peak favorable to the stalling characteristics. Substan-

tial increases in the maximum lift coefficient were also realized from
the cambered modifications.

The movable-type modifications were three leading-edge flaps having

different leading-edge radii, one of which conformed to that for the basic

airfoil section. Deflection of the leading-edge flap for the basic

section proved to be effective in increasing the maximum llft coefficient,
but failed to improve the stalling characteristics. The effect of increas-

ing the leading-edge radius of the flap was found to be negligible.

INTRODUCTION

The search for optimum airfoil sections for high--speed applications

has focused attention on sections that are thinner than those in common

usage because of their superior aerodynamic properties at high speed.

However, these thinner sections are handicapped by their relatively low

maximum lift coefficients and usually poor stalling characteristics.

These deficiencies are the result of the mechanism of the stall of thin
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sections. The flow separates from the leading edge prior to the separa-
tion of turbulent flow at the trailing edge of the airfoil. The abrupt-
ness of the flow separation is dependent on the individual airfoil
section, and is usually severe for airfoils in the thickness ratio range
from lO-to 12--percent chord.

Various methods of improving both the maximumlift and the stalling
characteristics of thin sections have been more or less successful. Flaps
at both the leading and the trailing edges are effective in increasing
maximumlift, but relatively ineffective in alleviating the abruptness of
the stall. Boundary--layer control by suction through a slot or porous
surface near the leading edge has both increased the maximumlift and
reduced the abruptness of the stall. These methods, however, add both
complexity and weight to any practical application and are not failure
proof in their operation.

In an attempt to provide a simpler meansof improving stall charac-
teristics, an investigation was undertaken to determine the effectiveness
of alterations to the leading-edge region of an NACA631-O12airfoil
section. This section was chosen because a previous investigation
(reference l) had demonstrated that its stall was the result of an abrupt
and complete separation of flow from the leading edge. The leading-edge
alterations tested were of two general types. The first consisted of
alterations to the first 15 percent of the profile, and the second, of
alterations to the contour of a leading-edge flap hinged at the 15--percent-
chord station on the lower surface.

The tests were conducted in the Ames7- by lO--foot wind tunnel No. i,
and the results include force and pressure-distribution measurements.

SYMBOLS

A summaryof the definitions of symbols used in this report is as
follows:

c airfoil chord, feet

cd drag coefficient I / D
\ qoc/

c Z section lift coefficient < Lq_/_

iThe drag force measured by the wind--tunnel balance is a sum of the drag

of the model and the skin-friction drag of the circular end plates

attached to the model.
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section pitching-moment coefficient referred to quarter chord _q-_c2_Cm

D drag per unit span_ pounds per foot I

L lift per unit span_ pounds per foot

M pitching momentper unit span_ pound-feet per foot

PZ local static pressurej pounds per square foot

Po free-stream static pressure_ pounds per square foot

P pressure coefficient _ To #
qo free--stream dynamic pressure oVo , pounds per square foot

Vo free--stream velocity, feet per second

x distance from basic airfoil leading edge measured parallel to chord

line_ feet

y distance measured normal to basic airfoil chord line, feet

s o section angle of attack_ degrees

5 leading-edge-flap deflection angle, degrees

Do free--stream mass density, slugs per cubic foot

MODEL AND APPARATUS

The basic model used in this investigation had an NACA 631-012
airfoil section with a constant chord of 4 feet and spanned the 7--foot

dimension of the wind--tunnel test section. The first 15 percent of the

model chord was removable to accommodate the various leading-edge modifi-
cations (fig. l(a)).

The model which conformed entirely to the NACA 631-012 coordinates

will hereafter be referred to as the basic airfoil in this report. The

modifications to the model were confined to the first 15 percent of the

airfoil chord in all cases. Coordinates for the basic airfoil section

and the various leadlng-edge modifications are presented in tables I and

TI, respectively.

The leading-edge modifications are derived as follows:

Modification i (l._--percent-chord leading-edge radius).-- The salient

features of the development of modification i are shown in figure l(b).

iSee footnote i_ page 2.
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A circle with a radius equal to 1.5 percent of the airfoil chord and

having its center on the chord line was made tangent to the leading edge

of the basic airfoil. The slope of the circle at x/c = 0.0025 was deter-

mined; and, together with the slope of the basic airfoil section at the

15-percent-chord station and an intermediate control point taken at

x/c = 0.025, a second-degree equation for the new contour was developed

(reference 2). The control point was arbitrarily located at the 2.5-

percent-_hord station to give nearly equal increases in thickness between

the basic airfoil section and modification l, and between modification 1

and modification 2.

Modification 2 (2--percent-chord leading-edge radius).- This modifi-

cation was derived in the same manner as modification i except that a

leading-edge radius of 2-percent chord was used.

Modification $ (15--percent-chord thickness distribution).-- The upper
surface of this modification remained the same as that of the basic airfoil

section; whereas the lower surface was altered by adding thickness such

that the sum of the absolute values of the ordinates for the upper and

lower surfaces was equal to the sum of the absolute values of the upper-

and lower--surface ordinates for the NACA 632-O15 airfoil section for corre--

sponding chordwise stations (fig. l(c)). This procedure was followed for

the first 5 percent of the chord, whereupon the enlarged lower surface was

arbitrarily faired back to the basic airfoil section at x/c = 0.15.

Modification 4 (18--percent-chord thickness distribution).-- The deri--

vation of this modification was identical to modification 3 except that an

NACA 63_-018 thickness distribution was provided for the first 5 percent

of the _hord (fig. l(c)).

Modification > (2--percent-chord leading-edge radius plus circular-arc

camber line forward of the 12._-percent-chord point).- This modification
was a combination of a circular-arc camber line forward of the 12.5-

percent-chord point and modification 2. The circular-arc camber line was

tangent to the chord line of the basic airfoil section at x/c = 0.125 and

passed through the point x/c = O, y/c =-0.02 (fig. l(d)). The ordinates

for modification 2 were then laid out normal to the camber line in accord-

ance with the practice described in reference 3.

Modification 6 (offset 3.5-percent-chord leadin_-edse radius).- This

modification was derived by constructing a circle with a radius of 3.5-

percent chord tangent to the upper--surface contour of the basic airfoil

section at x/c = 0.0025. The lower surface was faired from the basic

airfoil at x/c 0.15 tangent to the leading-edge circle at x/c = 0.025

(fig.l(e)).

Leadin_-esd e flaps.- Three leading-edge--flap arrangements were

designed by hinging (1) the leading-edge region of the basic airfoil

section, (2) the leading edge of modification l, and (3) the leading edge

of modification 2 about their lower surfaces at x/c = 0.15. (Only the
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leading-edge flap for the basic airfoil section is shownin fig. l(f).)
A circular-arc block served as a fairing on the upper surface between the
trailing edge of the flap and the 15-percent-chord station.

A row of static-pressure orifices was installed flush with the surface
at the midspan section for all model arrangements except modifications 3
and 4.

TESTS

All tests were madewith a dynamic pressure of 45 pounds per square
foot, a Machnumber of 0.177_ and a Reynolds number_based on the 4-foot--
chord dimension, of 4.92 million. The force data have been corrected for
the constraint of the tunnel walls by the method of reference 4. Circular
end plates, forming part of the tunnel floor and ceiling, were attached to
the model. Measurementsof drag of the model include the unknowntare
drag of these circular end plates and are presented only as a meansof com-
parison of incremental changes due to the various leading-edge modifica-
tions and not as an indication of the absolute values of the drag.

Considerable difficulty was encountered in obtaining data beyond the
stall for someconfigurations due to violent buffeting and shaking of the
model. Pressure distributions, measuredby meansof multiple--tube manom-
eters, were recorded photographically. Flow patterns about each of the
modifications were observed from indications of tufts spaced symmetrically
about the midspan section over the entire upper surface of the model.

RESULTSANDDISCUSSION

Effect of Leading-Edge Modifications

Stallin_ characteristics.-- A comparison of the stalling characteris-

tics of the model with the various modifications may best be discussed by

referring to figure 2. With modification 1 or 2, the, stalling character-

istics were nearly identical to those of the basic airfoil in that the peaks

of the lift curves are sharp and there is little or no tendency for the

curves to round over near maximum lift. The lift curves for modifications

3 and 4 are slightly more rounded immediately preceding ¢_max than those
previously mentioned, but tuft observations indicated that the flow was not

separated over the trailing-edge region for any of these four modifications.

Therefore, the additional rounding of the lift curves in the cases of modi-

fications 3 and 4 can be attributed only to a thicker boundary layer over

the rear portion of these models. However_ the large and sudden loss in

lift following maximum lift, characteristic of the basic airfoil section,

also was observed for modifications i_ 2_ 3_ and 4. This type of stall is
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generally a result of a failure of the separated boundary layer near the
leading edge to reattach to the upper surface of the airfoil.

Previous investigations have shownthat a small, localized region of
separated flow is discernible on the upper surface near the leading edge
of the NACA631-012 for moderate angles of attack. This region - the
so-called "bubble" of separated flow - movesforward along the surface as
the angle of attack is increased. In reference 5 it was stated that the
size of the region decreases with increasing Reynolds number. As the
bubble moves forward along the surface of the airfoil it is subjected to
increased local velocity which reduces its chordwise extent, but the
increased curvature of the surface for the more forward location makesit
more difficult for the separated flow to reattach to the surface. The
limiting condition occurs when the effect of curvature overcomesthe
effect of increased velocity and the flow is no longer able to reattach
to the surface. The amount of lift that is lost when the angle of attack
for maximumlift has been exceeded depends on the extent of turbulent
separation over the rear portion of the airfoil at the time of leading-
edge separation.

With modification 5 or 6 someimprovement in the stalling character-
istics was obtained, as indicated by the slight rounding near the lift-
curve peaks. This rounding is a result of separation of flow which
occurred initially near the trailing edge of these airfoils. The complete
stall of the airfoil, however, was probably the result of the failure of
the separated flow near the leading edge to reattach to the surface of the
model, thus providing the abrupt loss in lift once the maximumvalue was
attained.

Maximum lift.-- The effect of the leading-edge modifications was to

increase the maximum lift in all cases (fig. 2). Modifications i and 3,

although they differed radically in contour near the leading edge, had

approximately the same leading-edge radius (l.5-percent chord), and the

increases in maximum lift coefficient over that for the basic airfoil

were 0.05 and 0.06, respectively. Modifications 2 _a_d 4 likewise had dis--

similar profiles near the leading edge but had approximately the same

leading-edge radius (2--percent chord), and the increase in maximum lift
coefficient over that for the basic airfoil was 0.14 for both modifications.

Modification 5 increased cZ_ax 0.29 over that for the basic airfoil and
0.]..5over that for modificatlon 2, the uncambered counterpart of modifica-

tion 5. The greatest increase in cz was obtained with modification 6

and amounted to 0.35 over that for thema_asic airfoil.

These results are summarized in the following table:
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Airfoil section

Basic

Modification i

Do. 2

Do. 3
DO. 4

Do. 5

Do. 6

c Zmax

1.36
1.4l

1.50
1.42

1.50

1.65

1.71

Increase in CZmax

over basic airfoil

0.05
.14

.06

.14

.29

.35

Drag.- The drag characteristics for the basic airfoil and the six

modifications are presented in figure 3. In all cases for lift coeffi-

cients above 0.8_ the drag coefficients of the modifications are less

than those of the basic airfoil section. Even in the low-drag range for

the basic airfoil section, the maximum increase in the drag coefficient

for any of the modifications investigated, in this case modification 6,
was on the order of 0.002.

Pitching mount.- Only when the modification incorporated a form

of camber were the zero-lift pitching moments for the model changed from

those of the basic airfoil (fig. 4). Even then the additional negative

moment_ prevalent at the low lift coefficients_ tended to disappear as

the values of the lift coefficient approached their maximum.

Pressure distribution.- Pressure distributions for the basic

airfoil and the various modifications for approximately equal values of

lift coefficient are presented in figure 5. Increasing the leading-edge

radius without the inclusion of camber (modifications i and 2) had the

effect of reducing and rounding the negative pressure peak and reducing

the rate of pressure rise. The inclusion of camber (modifications 5 and

6) served to decrease further the peak and the adverse pressure gradient.

These changes in the pressure distribution would delay the forward pro-

gression of the bubble of separated flow with increasing angle of attack

and probably account for the greater maximum lift coefficients obtained

with these modifications. In the case of modifications i and 2_ the

delay in forward progression of the bubble was slight and not sufficient

to permit turbulent separation to start at the trailing edge. Progression

of the localized flow separation toward the leading edge, however, was

sufficiently delayed in the case of modifications 5 and 6 so that turbulent

separation was permitted to start at the trailing edge. Tuft observations

confirmed the onset of separation from the trailing-edge region and also

indicated a steady forward progression of the turbulent separation point

with increasing angle of attack. The region of nearly constant pressure

coefficients in figure 6 suggests this area of turbulent--flow separation

extended forward to approximately the 75-percent-chord station before

CZmax was reached.
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Effect of Leading-Edge Flap

Tests with the leading-edge--flap arrangements indicated only small
effects due to changes in leading-edge radius; therefore, only data from
tests of the model with the flap having the basic airfoil section are
presented.

Stallin_ characteristics.-- Deflecting the leading-edge flap proved

to be only slightly effective in improving the stalling characteristics

of the basic airfoil section. Improvement in stalling characteristics

occurred for deflections of the leading-edge flap only in the range

between 15 ° and 30 ° for which a slight rounding of the lift-curve peaks

(fig. 7) was evident. In this range of flap deflections_ tufts indicated

that separation of the boundary layer over the trailing-edge portion of

the airfoil occurred initially at an angle of attack several degrees below

that for Clmax. However, the stall associated with C_max for all

angles of deflection of the leading-edge flap was probably a result of a

failure of the separated laminar boundary layer to reattach to the sur-

face of the airfoil. The differences in lift curves for the airfoil

section with a leading-edge flap at 0 ° deflection (fig. 7) and those for

the basic airfoil section (fig. 2) were probably due to a slight surface

discontinuity at the flap--skirt trailing edge which was not present on

the basic airfoil.

Maximum lift.- Deflection of the leading-edge flap effectively

added camber to the airfoil, and thereby delayed separation of the flow

to greater angles of attack and increased the maximum lift coefficient.

A sunnnary of the maximum lift coefficients obtained for various deflec-

tions of the leading-edge flap is presented in figure 8. For deflections

of the leading-edge flap from 0° to lO °, the maximum lift coefficient

increased fairly rapidly; for deflections greater than lO ° but less than

30° , the maximum lift coefficient remained nearly constant; and for

deflections greater than 30 ° , the maximum lift coefficient decreased.

Lift 2 dra_ and pitching moment.- The camber due to the deflection

of the leading-edge flap caused an increase of the angle of attack for

zero lift (fig. 7). Correspondingly, there was an increase in negative

pitching--moment coefficient at zero lift and an increase in the angle of

attack for minimum drag. The additional negative pitching moment due to

deflection, which was qu_te large at small angles of attack, diminished

with increasing angle of attack much in the same manner as that described

for modifications 3 through 6.

Pressure distribution.- The chordwise variations of the pressure

coefficient P for three values of lift coefficient with each of four

leading-edge flap deflections are presented in figure 9. In the graphs

of pressure distribution for the leading-edge flap, the locations of the

pressure orifices on the deflected flap have been projected back to the

original chord line. This permitted the pressure coefficients for both

the flap and the circular-arc block to be plotted in their proper chord--

wise sequence starting from the leadin_ _dge and progressing toward the
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trailing edge. With a leading-edge--flap deflection of 15°, two negative
pressure peaks were established for the higher lift coefficients. For
lift coefficients of 1.19 and 1.54, the peak at the leading edge predom-
inated and undoubtedly was of sufficient magnitude to cause local laminar
separation. Following reattachment of the flow to the surface of the
airfoil, the turbulent boundary layer was then thinned by the increase in
velocity associated with the second negative pressure peak and conse-
quently had less tendency to separate when overcoming the pressure rise
over the afterportion of the model. The over-all effect was to enable
further increases of the angle of attack and consequently the lift of the
model before the separated laminar boundary layer was unable to reattach
to the surface. For lift coefficients approaching the maximum,the
pressure distributions and the tuft observations indicated that the tur-
bulent boundary layer was separated over the rear portion of the model
with the leading-edge flap deflected 15°.

As the angle of deflection of the leading-edge flap was increased
to 30o3 the negative pressure peak near the leading edge was not present
for the two lower values of lift coefficient (c Z = 0.61 and cz = 1.17).
Therefore, the flow probably remained laminar until the pressure began to
rise behind the negative pressure peak associated with the circular-arc
block. For angles of attack greater than 8°, however, the pressures near
the leading edge decreased at a greater rate than those farther back on
the leading-edge flap (fig. lO) so that, after an angle of attack of
approximately 14° was reached, there existed the customary negative pres-
sure peak near the leading edge. As a result, fully developed turbulent
boundary--layer flow must be assumedto have occurred ahead of the second
negative pressure peak for angles of attack greater than 14°. As the
angle of attack for the maximumlift coefficient was approached, separa-
tion of flow began to appear near the trailing edge of the model. The
existence of separation of the turbulent boundary layer as far forward as
80-percent chord prior to the stall was indicated by both the pressure
distributions (fig. 9) and tufts.

For a 40° deflection of the leading-edge flap, the negative pressure
peak near the leading edge was completely ellminated throughout the
entire angle-of-attack range. For low and moderate angles of attack,
tuft observations indicated that smooth flow was maintained to the nega-
tive pressure peak over the circular-arc block and that noticeably
rougher flow took place in the region of pressure rise immediately fol-
lowing the peak. For angles of attack approaching those for maximum
llft, only a slight amount of turbulent separation near the trailing edge
was evident from the pressure distribution and tuft observations. The
stall, resulting from the breakaway of flow over the circular-arc block,
occurred before the customary negative pressure peak near the leading
edge was established. To this cause must be attributed the decrease in
the maximumlift coefficient for deflections greater than 30°. The flow
separation resulting in the stall occurred instantaneously over the
entire upper surface behind the circular-arc block but failed to disrupt
the smooth character of the flow over the upper surface from the leading
edge to the circular-arc block.
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CONCLUSIONS

A wind--tunnel investigation of modifications to the leading-edge
region of the NACA631-012 airfoil section has show_the following
results:

i. Modifications with greater-than--normal leading-edge radii com--
bined with certain types of camber had a favorable effect on the m_ximum
lift, but showedonly slight improvements in the stalling characteristics.
Modifications with greater-than-normal leading-edge radii and no camber
and modifications incorporating a superposition of increased thic_ess
showedlittle or no improvement over either the maximumlift or stalling
characteristics of the basic airfoil section.

2. For the basic airfoil section with leading-edge flaps, the maxi-
mumlift coefficient increased fairly rapidly with flap deflections up to
a deflection of i0°_ remained nearly constant for the range of deflections
from i0 ° to 30° , and decreased for deflections _eater than 30° . The
stalling characteristics throughout the range of leading-edge-flap deflec-
tions remained essentially those of the basic airfoil section.

AmesAeronautical Laboratory,
National Advisory Committee for Aeronautics,

Moffett Field_ Calif., Sept. 14, 1950.
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TABLEI.- COORDINATESFORTHENACA631-O12AIRFOIL SECTION

[Stations and ordinates given in percent of airfoil chord]

Station O_dinate

0
.5

.75

1.25

2.5

5

7.5
i0

15
2O

25

30

35

4O

45

5O

55
60

65

70

75
8O

85

9O

95
I00

0

.985

1.194

1.519
2.102

2.925

3.542

4.039

4.799

5.342

5.712

5.930

6.000

5.920
5.704

5.370

4.935

4.42o

3.840

3.21o
2.556

1.902

1.274

.707

.25o
o

L.E. radius: 1.087-

percent chord.
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TABLE II.- COORDINATES FOR THE VARIOUS LEADING--EDGE MODIFICATIONS

[Stations and ordinates given in percent of airfoil chord]

Leading-Edge Modification i

Station Ordinate

0

.5

.75

1.25
2.5

5

7.5
i0

15

0

1.125
1.355
1.7o5
2.31o
3.1oo
3.660

4.o95
4.799

L.E. radius: 1.5--

percent chord.

Leading-Edge Modification 3

Leading--Edge Modification 2

Sta t ion Or d Ina te

0 0

•5 1.325
•75 1.575

1.25 1.936

2.5 2.525

5 3.238

7.5 3.727

i0 4.124

15 4.799

L.E. radius: 2.0-

percent chord.

Leading--Edge Modification 4

Upper surface

Station Ordinate

0 0

•5 .985
•75 1.194

1.25 1.519

2.5 2.102
5 2.925
7.5 3.542

i0 4.039

15 4.799

Lower surface

Station Ordinate

O 0

•5 -1.423

•75 -1.730

1.25 --2.237

2.5 -3.118
5 --4.371

7.5 --4.993

i0 --5.068

15 -4.799

Leading-Edge Modification 5

Upper surface

Upper surface Lower surface

Station Ordinate

0 0

•5 .985
•75 1.194

1.25 1.519

2.5 2.i02
5 2.925
7.5 3.542

i0 4.039

15 4.799

Station Ordinate

0 0

•5 -1.823

•75 -2.232

1.25 -2.915

2.5 -4.1o6

5 --5.799

7.5 -6.388

i0 -6.173

15 -4.799

Leading--Edge Modification 6

Upper surface Lower surface

Station Ordinate

0 -0.919

.lO3 -.575

.288 -.256

.706 .246

1.870 1.177

4.394 2.473

7.035 3.385

9.743 4.038

15.000 4.799

Lower surface

Statlon Ordinate

0 -1.851

.897 -3.103

i.212 -3.268

1.794 -3.470

3.i30 -3.7i3

5.6o6i -3.889

7.965 -4.Oll

io.257i -4.194
15.ooo -4.799

L.E. radius: 2.0-percent chord.

Center for L.E. radius:

Sta., 1.945; Ordinate3 --1.385.

StatlonOrdinate

0 0.363

•5 .985
•75 1.194

1.25 1.519

2.5 2.102

5 2.925

7.5 3.542

i0 4.039

15 4.799

Station Ordinate

0 -3.243

•5 -3.889

•75 -4.121

1.25 -4.471

2.5 -4.904

5 -9.080
7 -5 -5.100

i0 --5.040

15 -4.799

L.E. radius: 3._-percent chord.

Center for L.E. radius:

Sta., 3.000; Ordinate 3 --1.440.
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15.00 _

oo.

/oo00

(o) Typical section through the model.

0"251

Slopes of the L./E_._
circles at 025

(b)

p._ 15.oo "1 _
2.50_-/-Control_- \_--;-'-_ _-Slopeor the

__ _ basic airfoil

_ 1.50t?
_- LO9R (Basic airfoil)

Design details for modifications I 8 2.

__o_ oo--_ _ _

2.00 R
Thickness for the NACA 63_-018 "1
Thickness for the NACA 63r015

(c) Modifications 3 8 4.

Uo _---l_.OO---_

_.5oRI_X.L../--- ..... .J

(e)

(d) Modification 5.

Circular-arc
block 7

Modification 6. (f) Leading- edge flop.

Note.. All dimensions in percent chord. _ _J"

Figure L-Geometry of the mode/and the various

leading-edge modifications.
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Figure 2.-Effects of the various fixed leading-edge

modifications on the section lift characteristics of the

mode/.
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the vicinityof the fixed leading-edge modifications.
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Figure 8.-The variation of maximum section liH

coefficient with leading-edge flap deflection.
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Figure I0.-The variation of pressure coefficient with angle

of attack for the mode/ with the leading-edge Hap

deflected 50 °.
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